CSV 文件和 csv 模块
约 590 字大约 2 分钟
CSV 文件和 csv 模块
标准库中有自带的 csv
(逗号分隔值) 模块处理 csv
格式的文件:
In [1]:
import csv
读 csv 文件
假设我们有这样的一个文件:
In [2]:
%%file data.csv
"alpha 1", 100, -1.443
"beat 3", 12, -0.0934
"gamma 3a", 192, -0.6621
"delta 2a", 15, -4.515
Writing data.csv
打开这个文件,并产生一个文件 reader:
In [3]:
fp = open("data.csv")
r = csv.reader(fp)
可以按行迭代数据:
In [4]:
for row in r:
print row
fp.close()
['alpha 1', ' 100', ' -1.443']
['beat 3', ' 12', ' -0.0934']
['gamma 3a', ' 192', ' -0.6621']
['delta 2a', ' 15', ' -4.515']
默认数据内容都被当作字符串处理,不过可以自己进行处理:
In [5]:
data = []
with open('data.csv') as fp:
r = csv.reader(fp)
for row in r:
data.append([row[0], int(row[1]), float(row[2])])
data
Out[5]:
[['alpha 1', 100, -1.443],
['beat 3', 12, -0.0934],
['gamma 3a', 192, -0.6621],
['delta 2a', 15, -4.515]]
In [6]:
import os
os.remove('data.csv')
写 csv 文件
可以使用 csv.writer
写入文件,不过相应地,传入的应该是以写方式打开的文件,不过一般要用 'wb'
即二进制写入方式,防止出现换行不正确的问题:
In [7]:
data = [('one', 1, 1.5), ('two', 2, 8.0)]
with open('out.csv', 'wb') as fp:
w = csv.writer(fp)
w.writerows(data)
显示结果:
In [8]:
!cat 'out.csv'
one,1,1.5
two,2,8.0
更换分隔符
默认情况下,csv
模块默认 csv
文件都是由 excel
产生的,实际中可能会遇到这样的问题:
In [9]:
data = [('one, \"real\" string', 1, 1.5), ('two', 2, 8.0)]
with open('out.csv', 'wb') as fp:
w = csv.writer(fp)
w.writerows(data)
In [10]:
!cat 'out.csv'
"one, ""real"" string",1,1.5
two,2,8.0
可以修改分隔符来处理这组数据:
In [11]:
data = [('one, \"real\" string', 1, 1.5), ('two', 2, 8.0)]
with open('out.psv', 'wb') as fp:
w = csv.writer(fp, delimiter="|")
w.writerows(data)
In [12]:
!cat 'out.psv'
"one, ""real"" string"|1|1.5
two|2|8.0
In [13]:
import os
os.remove('out.psv')
os.remove('out.csv')
其他选项
numpy.loadtxt()
和 pandas.read_csv()
可以用来读写包含很多数值数据的 csv
文件:
In [14]:
%%file trades.csv
Order,Date,Stock,Quantity,Price
A0001,2013-12-01,AAPL,1000,203.4
A0002,2013-12-01,MSFT,1500,167.5
A0003,2013-12-02,GOOG,1500,167.5
Writing trades.csv
使用 pandas
进行处理,生成一个 DataFrame
对象:
In [15]:
import pandas
df = pandas.read_csv('trades.csv', index_col=0)
print df
Date Stock Quantity Price
Order
A0001 2013-12-01 AAPL 1000 203.4
A0002 2013-12-01 MSFT 1500 167.5
A0003 2013-12-02 GOOG 1500 167.5
通过名字进行索引:
In [16]:
df['Quantity'] * df['Price']
Out[16]:
Order
A0001 203400
A0002 251250
A0003 251250
dtype: float64
In [17]:
import os
os.remove('trades.csv')